Impact of local biogeochemical processes and climate variability on ocean acidification in the Bering Sea

Darren Pilcher JISAO/NOAA PMEL darren.pilcher@noaa.gov

Ocean Acidification (OA)

Data: Mauna Loa (ftp://aftp.cmdl.noaa.gov/products/frends/co2/co2_mm_mlo.txt) ALOHA (http://hahana.soest.hawaii.edu/hot/products/HOT_surface_CO2.txt) Ref: J.E. Dore et al, 2009. Physical and biogeochemical modulation of ocean acidification in the central North Pacific. *Proc Natl Acad Sci USA* 106:12235-12240.

Alaska's Fisheries are at Risk

Mathis et al. 2015, Progress in Oceanography

Spatial Variability

Temporal Variability

Research Questions

- 1. What are the mechanisms behind the observed spatial variability in Ω_{arag} ?
- 2. What is the impact of climate variability on the ocean carbon cycle?
- 3. How does this climate variability impact the rate of ocean acidification?

Bering Sea OA Model

Biological Productivity

Phytoplankton productivity drives seasonal cycle, elevated shelf $\Omega_{\rm Arag}$

Minimal production in nearshore regions, but doesn't explain corrosive conditions

Freshwater Runoff

Season	TA ¹	DIC ²	TA/DIC
Spring (May- Jun)	1238	1480	0.84
Summer- Autumn (Jul- Oct)	1518	1890	0.80
Winter (Nov- Apr)	2743	4100	0.67

¹ Mathis et al. 2011; PARTNERS 2010

² Striegl et al. 2007

TA/DIC Ratio: Low values = lower buffer capacity High values = higher buffer capacity

Low salinity regions correspond to regions of reduced buffering capacity

Combined Effect

Productivity increase TA/DIC and Ω_{Arag} in middle and outer shelf

Freshwater runoff decrease TA/DIC and Ω_{Arag} in inner shelf

Climate Variability

Colder temperatures

Climate Variability

Reduced omega

TA/DIC drives change in Ω_{Arag}

DIC Increases Despite Increase in Productivity

OA Amidst Natural Variability

Masking Effect

Increasing Carbon Uptake on Shelf

Substantial increase in shelf carbon uptake driven by increase in fall phytoplankton productivity

Observational estimates vary considerably (2-67 PgC/year)

Extrapolating suggests shelf annual Ω_{Arag} < 1 by 2040

But we can do better!

Projected future biophysical states of the Bering Sea

Albert J. Hermann ^{a,e,*}, Georgina A. Gibson ^b, Nicholas A. Bond ^{a,e}, Enrique N. Curchitser ^c, Kate Hedstrom ^d, Wei Cheng ^{a,e}, Muyin Wang ^{a,e}, Edward D. Cokelet ^e, Phyllis J. Stabeno ^e, Kerim Aydin ^f

Bottom Water Acidification and Warming on the Western Eurasian Arctic Shelves: Dynamical Downscaling Projections P. J. Wallhead¹ ⁽¹⁾, R. G. J. Bellerby^{1,2}, A. Silyakova³ ⁽²⁾, D. Slagstad⁴, and A. A. Polukhin⁵ ⁽¹⁾

Conclusions

- Productivity, freshwater runoff drive spatial heterogeneity in Ω_{Arag}
- Observed climate variability modifies rate of Ω_{arag} decrease, masks in outer shelf region
- Increase in atmospheric CO_2 still dominant mechanism, Ω_{arag} decreases by 0.2 over 10-year timeframe

Team: Jeremy Mathis (NOAA Arctic Research Program), Samantha Siedlecki (UConn), Al Hermann (PMEL/JISAO), Danielle Naiman (UCSD), Jessica Cross (NOAA PMEL), Ken Coyle (UAF), Wiley Evans (Hakai Institute)

Funding: NOAA Arctic Research Program, National Research Council, Integrated Ocean Observing System, Alaska Ocean Observing System

Questions?

darren.pilcher@noaa.gov